545 research outputs found

    Optimising a nonlinear utility function in multi-objective integer programming

    Get PDF
    In this paper we develop an algorithm to optimise a nonlinear utility function of multiple objectives over the integer efficient set. Our approach is based on identifying and updating bounds on the individual objectives as well as the optimal utility value. This is done using already known solutions, linear programming relaxations, utility function inversion, and integer programming. We develop a general optimisation algorithm for use with k objectives, and we illustrate our approach using a tri-objective integer programming problem.Comment: 11 pages, 2 tables; v3: minor revisions, to appear in Journal of Global Optimizatio

    Linear force and moment equations for an annular smooth shaft seal perturbed both angularly and laterally

    Get PDF
    Coefficients are derived for equations expressing the lateral force and pitching moments associated with both planar translation and angular perturbations from a nominally centered rotating shaft with respect to a stationary seal. The coefficients for the lowest order and first derivative terms emerge as being significant and are of approximately the same order of magnitude as the fundamental coefficients derived by means of Black's equations. Second derivative, shear perturbation, and entrance coefficient variation effects are adjudged to be small

    An Intelligent Advisor for City Traffic Policies

    Get PDF
    Nowadays, city streets are populated not only by private vehicles but also by public transport, fleets of workers, and deliveries. Since each vehicle class has a maximum cargo capacity, we study in this article how authorities could improve the road traffic by endorsing long term policies to change the different vehicle proportions: sedans, minivans, full size vans, trucks, and motorbikes, without losing the ability of moving cargo throughout the city. We have performed our study in a realistic scenario (map, road traffic characteristics, and number of vehicles) of the city of Malaga and captured the many details into the SUMO microsimulator. After analyzing the relationship between travel times, emissions, and fuel consumption, we have defined a multiobjective optimization problem to be solved, so as to minimize these city metrics. Our results provide a scientific evidence that we can improve the delivery of goods in the city by reducing the number of heavy duty vehicles and fostering the use of vans instead.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. This research has been partially funded by the Spanish MINECO and FEDER projects TIN2014-57341-R, TIN2016-81766-REDT, and TIN2017-88213-R. University of Malaga, Andalucia TECH. Daniel H. Stolfi is supported by a FPU grant (FPU13/00954) from the Spanish MECD. Christian Cintrano is supported by a FPI grant (BES-2015-074805) from Spanish MINECO

    Evolutionary Multi-Criterion Optimization. Proceedings of the 5th International Conference on Evolutionary Multi-Criterion Optimization, Nantes, France, 7-10 avril 2009

    Get PDF
    This book constitutes the refereed proceedings of the 5th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2009, held in Nantes, France in April 2009.The 39 revised full papers presented together with 5 invited talks were carefully reviewed and selected from 72 submissions. The papers are organized in topical sections on theoretical analysis, uncertainty and noise, algorithm development, performance analysis and comparison, applications, MCDM Track, Many objectives, alternative methods, as well as EMO and MCDA

    On the Effect of Connectedness for Biobjective Multiple and Long Path Problems

    Get PDF
    Recently, the property of connectedness has been claimed to give a strong motivation on the design of local search techniques for multiobjective combinatorial optimization (MOCO). Indeed, when connectedness holds, a basic Pareto local search, initialized with at least one non-dominated solution, allows to identify the efficient set exhaustively. However, this becomes quickly infeasible in practice as the number of efficient solutions typically grows exponentially with the instance size. As a consequence, we generally have to deal with a limited-size approximation, where a good sample set has to be found. In this paper, we propose the biobjective multiple and long path problems to show experimentally that, on the first problems, even if the efficient set is connected, a local search may be outperformed by a simple evolutionary algorithm in the sampling of the efficient set. At the opposite, on the second problems, a local search algorithm may successfully approximate a disconnected efficient set. Then, we argue that connectedness is not the single property to study for the design of local search heuristics for MOCO. This work opens new discussions on a proper definition of the multiobjective fitness landscape.Comment: Learning and Intelligent OptimizatioN Conference (LION 5), Rome : Italy (2011

    Integer programming methods for large-scale practical classroom assignment problems

    Get PDF
    In this paper we present an integer programming method for solving the Classroom Assignment Problem in University Course Timetabling. We introduce a novel formulation of the problem which generalises existing models and maintains tractability even for large instances. The model is validated through computational results based on our experiences at the University of Auckland, and on instances from the 2007 International Timetabling Competition. We also expand upon existing results into the computational difficulty of room assignment problems

    Bi-objective network equilibrium, traffic assignment and road pricing

    Get PDF
    Multi-objective equilibrium models of traffic assignment state that users of road networks travel on routes that are efficient with respect to several objectives, such as travel time and toll. This concept provides a general framework for modelling traffic flow in tolled road networks. We present the concept of time surplus maximisation as a way of handling user preferences. Given a toll, users have a maximum time they are willing to spend for a trip. Time surplus is this maximum time minus actual travel time. A rational user can be assumed to maximise time surplus, leading to the definition of time surplus maximisation bi-objective user equilibrium. We propose to use such models on the lower level of bi-level models for pricing in road networks under multiple upper level objectives such as minimising total travel time and emissions. In such a model a multi-objective optimisation problem at the upper level is combined with a multi-objective equilibrium problem at the lower level

    Integer programming for minimal perturbation problems in university course timetabling

    Get PDF
    In this paper we present a general integer programming-based approach for the minimal perturbation problem in university course timetabling. This problem arises when an existing timetable contains hard constraint violations, or infeasibilities, which need to be resolved. The objective is to resolve these infeasibilities while minimising the disruption or perturbation to the remainder of the timetable. This situation commonly occurs in practical timetabling, for example when there are unexpected changes to course enrolments or available rooms. Our method attempts to resolve each infeasibility in the smallest neighbourhood possible, by utilising the exactness of integer programming. Operating within a neighbourhood of minimal size keeps the computations fast, and does not permit large movements of course events, which cause widespread disruption to timetable structure. We demonstrate the application of this method using examples based on real data from the University of Auckland

    A multiobjective optimization approach to compute the efficient frontier in data envelopment analysis

    Get PDF
    Data envelopment analysis is a linear programming-based operations research technique for performance measurement of decision-making units. In this paper, we investigate data envelopment analysis from a multiobjective point of view to compute both the efficient extreme points and the efficient facets of the technology set simultaneously. We introduce a dual multiobjective linear programming formulation of data envelopment analysis in terms of input and output prices and propose a procedure based on objective space algorithms for multiobjective linear programmes to compute the efficient frontier. We show that using our algorithm, the efficient extreme points and facets of the technology set can be computed without solving any optimization problems. We conduct computational experiments to demonstrate that the algorithm can compute the efficient frontier within seconds to a few minutes of computation time for real-world data envelopment analysis instances. For large-scale artificial data sets, our algorithm is faster than computing the efficiency scores of all decision-making units via linear programming

    Towards multiobjective optimization and control of smart grids

    Get PDF
    The rapid uptake of renewable energy sources in the electricity grid leads to a demand in load shaping and flexibility. Energy storage devices such as batteries are a key element to provide solutions to these tasks. However, typically a trade-off between the performance related goal of load shaping and the objective of having flexibility in store for auxiliary services, which is for example linked to robustness and resilience of the grid, can be observed. We propose to make use of the concept of Pareto optimality in order to resolve this issue in a multiobjective framework. In particular, we analyse the Pareto frontier and quantify the trade-off between the non-aligned objectives to properly balance them.Comment: 20 pages, 8 figures, journal pape
    • …
    corecore